Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox
نویسندگان
چکیده
منابع مشابه
Functional analysis of the Volvox carteri asymmetric division protein GlsA
The Zuotin-family J protein chaperone GlsA is essential for the asymmetric divisions that establish germ and somatic cell initials during embryogenesis in the green alga Volvox carteri, but it is not known on what cellular process GlsA acts to carry out this function. Most GlsA protein is nuclear, and GlsA possesses two SANT domains, suggesting that GlsA may function as a transcriptional regula...
متن کاملglsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein.
The gls genes of Volvox are required for the asymmetric divisions that set apart cells of the germ and somatic lineages during embryogenesis. Here we used transposon tagging to clone glsA, and then showed that it is expressed maximally in asymmetrically dividing embryos, and that it encodes a 748-amino acid protein with two potential protein-binding domains. Site-directed mutagenesis of one of ...
متن کاملPrefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation.
Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite tha...
متن کاملThe WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria.
The Net2, Fis1, and Dnm1 proteins are required for the division of mitochondria in the yeast Saccharomyces cerevisiae. Net2p has an amino-terminal region that contains predicted coiled-coil motifs and a carboxyl-terminal domain composed of WD-40 repeats. We found that the amino-terminal part of Net2p interacts with Fis1p, whereas the carboxyl-terminal region interacts with both Dnm1p and Fis1p....
متن کاملMinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.
The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE bindi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Biology
سال: 2005
ISSN: 0012-1606
DOI: 10.1016/j.ydbio.2005.08.028